
GraphQL
Revolutionizing API Design

In the rapidly evolving landscape of software development,

choosing an appropriate technology can signi�cantly impact

the e�ciency, �exibility, and overall success of an application.

GraphQL has emerged as a game-changing solution that

addresses numerous challenges associated with traditional

API design. This paper explores the compelling advantages

of utilizing GraphQL and highlights how it transforms the

way we approach data querying, retrieval, and integration.

In the era of the Internet of Things (IoT) and Big Data where

an increasing amount of information is being collected and

stored, there is need to revisit how to better optimize the

speed and accuracy of retrieving and analyzing data to

garner meaningful insights. As a result, GraphQL has risen in

popularity particularly for companies managing larger,

complex data sources. GraphQL allows a user to get the

exact information needed in a single query. As an alternative

to REST, GraphQL is also relatively easy to implement with the

number of JSON API libraries that are available in

many languages.

GraphQL was originally developed by Facebook in 2012 and became

open source in 2015. The GraphQL Foundation was created in 2019

with the objective of ensuring that the GraphQL community continue

to evolve the speci�cation and reference implementations, or

programs that implement all requirements from a corresponding

speci�cation. GraphQL has been implemented by large online services

such as Shopify, Expedia, Instagram, X (formerly Twitter), and many

others. Let’s examine some of the key advantages of GraphQL.

Simplifying Customer Integrations

GraphQL puts the client in the driver’s seat when it comes to data

retrieval. Unlike conventional solutions, GraphQL allows clients to

explicitly de�ne the structure of the data they require. This precision

ensures that only the necessary information is returned, preventing the

unnecessary transfer of large datasets. For example, with REST API, a

person’s name, date of birth, address, phone number, and other

information would be delivered in query from a person object when all

you needed was the phone number. Additionally, if you need a person’s

phone number and the date of their last visit, that will require two object

requests to be submitted. By eliminating over-fetching and under-

fetching of data, GraphQL optimizes network utilization, leading to faster

response times and improved overall performance.

Moreover, GraphQL empowers clients to dictate work�ows that best suit

their needs. With GraphQL, clients can perform multiple actions in a

single call, streamlining the interaction between client and server. This

capability not only simpli�es the development process but also reduces

the number of network requests, minimizing latency and enhancing the

user experience. The support for related actions within a single parent

GraphQL is the leading open-source query
language for APIs that streamlines the
request process improving performance
and response exchange.

GraphQL Whitepaper

ST Engineering iDirect | www.idirect.net 11/23

action is another compelling facet of GraphQL. This allows clients

to e�ciently retrieve interconnected data, reducing the need for

multiple round-trip requests. Consequently, GraphQL promotes a

more intuitive and coherent approach to data access, fostering

the development of applications that seamlessly navigate

complex data structures.

Current REST API requires multiple actions (24 in this example) to

commission a terminal. Any resulting individual failures on

actions require further API calls to �x. GraphQL removes the

complexity to the request body, simplify validation by providing

client schema, and drastically reduce the calls necessary.

Reducing Logic

GraphQL can substantially reduce the amount of logic required on

the client side. Traditional solutions often necessitate extensive

client-side processing to aggregate, �lter, and manipulate data

retrieved from di�erent endpoints. In contrast, GraphQL’s ability to

consolidate multiple actions and related actions simpli�es the data-

fetching process. This results in cleaner, more maintainable client-

side code, as developers are freed from the burden of managing

intricate data retrieval logic.

Future Proof

One of the most distinctive features of GraphQL is its inherent

“future-proof” nature. This sets it apart from conventional

solutions, which often require meticulous versioning to

accommodate changes and potentially disrupt customer

integrations. Being technology-agnostic, companies can

implement GraphQL with programming languages they already

use, such as Java, Python, Ruby, .NET or Javascript. GraphQL

takes a granular approach, which enables clients to request only

the precise data they need. As we introduce new features or

enhancements, clients can seamlessly integrate these changes

into their work�ows without undergoing extensive

modi�cations. This forward compatibility not only ensures a

smooth transition but also cultivates an agile and

adaptable ecosystem.

Method

POST

Method

/api/1.0/config/element/terminal/provision

API URL

GET

POST

/api/1.0/config/element/satelliterouter/<ID>

/graphql

GET

WebSocket

api/1.0/config/element/virtualroot?obj_name=<Network Name>

/graphql

.

POST /api/1.0/config/element/<Terminal ID>/apply_changes

API URL SEQ

SEQ

1

1

3

2

2

. . .

24

Example of Terminal Provisioning via REST vs. GraphQL

ST Engineering iDirect | www.idirect.net 11/23

Drawbacks and Concerns:

While GraphQL presents numerous advantages in revolutionizing

data interaction and integration, it’s important to acknowledge

some of its drawbacks. One such drawback of GraphQL is that

queries tend to result in larger text payloads being sent

compared to traditional REST requests. This can have implications

for bandwidth consumption and response times. However,

GraphQL allows query responses to be �nely �ltered, enabling

clients to request only the necessary data. Additionally, GraphQL’s

architecture permits the assembly of query responses from

multiple microservices, further optimizing the data returned and

reducing the amount of unnecessary information.

The process of de�ning an initial schema in GraphQL might be

seen as a disadvantage, as it requires more upfront work

compared to some other approaches. However, GraphQL’s

schema-�rst approach allows for e�ective code generation,

automatically generating types, queries, and mutations. This

considerably reduces the total cost of ownership over time, as it

streamlines development and enforces consistency.

While these concerns may give pause, it’s crucial to recognize

that the advantages of GraphQL far outweigh these

disadvantages many cases. GraphQL’s abilities signi�cantly

enhance application performance and user experience.

As the software industry continues to evolve, GraphQL stands as

a versatile and powerful tool that signi�cantly enriches the way

we interact with and integrate data, ultimately paving the way

for more e�cient, �exible, and responsive applications.

along with reliable transport mediums to deliver comprehensive

solutions in the digital marketplace.

GraphQL Whitepaper

What is it?

Architecture Client-driven

A query language and method to create and manipulate APIs

Ideal for Large, complex, and interrelated data sources

Data access Single URL endpoint

Data Fetching Returns data in a �exible structure de�ned by the client

Use Cases Multiple microservices, mobile apps

GraphQL

GraphQL vs. REST

A set of rules that de�nes structured data

exchange between a client and a server

REST

Server-driven

Multiple endpoints in the form of URLs

Well de�ned, simple data sources

Returns data in a �xed structure

de�ned by the server

Simple apps, resource-drive apps

At ST Engineering iDirect, we recognized the need for a more �exible and e�cient structure data exchange as well as the bene�ts for more

granular data to accommodate the growing number of users and API loads on our customers’ networks. Our move towards microservices and

cloud-based architectures also facilitates the adoption of GraphQL. However, we will continue to support REST for Standard APIs.

