
OpenAMIP™ Standard

Version 1.16

September 12, 2017

OpenAMIP™ Standard <ProductName Variable>

ii OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Copyright© 2017, Inc. All rights reserved. Reproduction in whole or in part without permission is prohibited.
Information contained herein is subject to change without notice. The specifications and information regarding the
products in this document are subject to change without notice. All statements, information and recommendations
in this document are believed to be accurate, but are presented without warranty of any kind, express, or implied.
Users must take full responsibility for their application of any products. Trademarks, brand names and products
mentioned in this document are the property of their respective owners. All such references are used strictly in an
editorial fashion with no intent to convey any affiliation with the name or the product's rightful owner.

VT iDirect® is a global leader in IP-based satellite communications providing technology and solutions that enable
our partners worldwide to optimize their networks, differentiate their services and profitably expand their
businesses. Our product portfolio, branded under the name iDirect, sets standards in performance and efficiency to
deliver voice, video and data connectivity anywhere in the world. VT iDirect is the world’s largest TDMA enterprise
VSAT manufacturer and is the leader in key industries including mobility, military/government and cellular
backhaul.

VT iDirect®

Company Web site: http://www.idirect.net ~ Main Phone: 703.648.8000
TAC Contact Information: Phone: 703.648.8151 ~ Email: tac@idirect.net ~ Web site: http://tac.idirect.net

iDirect Government™, created in 2007, is a wholly owned subsidiary of iDirect and was formed to better serve the
U.S. government and defense communities.

iDirect Government™
Company Web site: http://www.idirectgov.com ~ Main Phone: 703.648.8118
TAC Contact Information: Phone: 703.648.8111 ~ Email: tac@idirectgov.com ~ Web site: http://tac.idirectgov.com

Document Name: OpenAMIP_Standard_RevD_09122017.pdf

Document Part Number: T0000682

http://www.idirectgov.com
mailto: tac@idirectgov.com
http://tac.idirectgov.com
mailto:tac@idirect.net
http://tac.idirect.net
http://www.idirect.net

Revision History
Revision History
The following table shows all revisions for this document. To determine if this is the latest
revision, check the Technical Assistance Center (TAC) Web site. Refer to Getting Help on
page ix for TAC access information.

Revision Date Updates

A 08/04/2015 • First release of the OpenAMIP Standard (version 1.8) document in
iDirect Technical Publications template. For changes from version
1.7 to 1.8, see Modified OpenAMIP on page 18.

• The time parameter of the w command is now made mandatory.
See Message Types on page 5.

B 10/12/2016 Updated to OpenAMIP Standard version 1.9 to 1.12.

C 11/11/2016 Updated “w, W, H, and C” type message descriptions.

D 09/08/2017 Here are the changes from version 1.12 to 1.16:

• Time is now always accepted as float.
• New reserved parameters in "N" and "s" messages.
• New parameter in "s" message for detailed enumerated status

code.
• New reserved parameter in "F" message and new reserved "f"

message.
• Reason Code = 0 should be used when the modem may transmit.
• 'F' command has a new reserved parameter.
• Added a note about optional parameters in 2.1.
• Added an example of 's' in a blockage zone in 2.6.2.
• Deleted Section 3.1.1; it was redundant with the Revision History.
OpenAMIP™ Standard Version 1.16 iii
T0000682 | Rev D

Revision History
iv OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Contents
Contents
Revision History . iii

About. vii

Purpose . vii

Disclaimer . vii

Certification .viii

Audience .viii

Contents .viii

Document Conventions . ix

Getting Help . ix

Chapter 1 Introduction . 1

Chapter 2 Protocol Specification . 3

2.1 Introduction . 3

2.2 Syntax . 3

2.3 Message Types. 5

Antenna Status Codes . 11

2.4 Physical Layer . 12

2.4.1 TCP Interface . 12

2.4.2 UDP Interface . 12

2.4.3 Asynchronous Serial Interface . 13

2.5 Semantics. 13

2.6 Examples . 15

2.6.1 Messages from Modem to Antenna Controller . 15
OpenAMIP™ Standard Version 1.16 v
T0000682 | Rev D

Contents
2.6.2 Messages from Antenna Controller to Modem . 16

Chapter 3 Compatibility . 17

3.1 Version Compatibility . 17

3.2 Modified OpenAMIP . 18

3.3 Hardware Compatibility . 18

Chapter 4 Test Suite. 19

4.1 Modem Module Reference Design . 19

4.2 OpenAMIP_sim.c . 19

4.3 OpenAMIP_modem.c. 30
vi OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

About
About
Purpose
This document describes the Open Antenna Modem Interface Protocol (OpenAMIP™) for
satellite terminals. OpenAMIP is an ASCII message-based protocol for the interchange of
information between an antenna controller and a satellite modem. OpenAMIP allows the
modem to command the controller to seek a particular satellite. OpenAMIP also allows the
modem and controller to exchange information necessary to initiate and maintain
communications through the satellite.

OpenAMIP is designed to be extensible for vendor-specific enhancements.

Disclaimer
This protocol specification is Copyright© 2006-2013 iDirect. All rights reserved.

The Protocol was developed by iDirect.

The name "OpenAMIP" is a trademark™ of iDirect.

Permission to copy and distribute this document in unmodified form is hereby granted to all
without restriction. Modified forms of this document may be distributed, but only if this "legal
matters" section is retained intact and provided that any document that describes a modified
form of the protocol clearly states that the protocol is modified.

To the extent that iDirect has rights to control the protocol itself, iDirect grants rights to
implement the protocol to all, without restriction.

Use of the trademark "OpenAMIP" to describe an unmodified implementation of this protocol
is unrestricted. Use the term "modified OpenAMIP" to describe a variant of this protocol, is
also unrestricted; however the document containing the term "modified OpenAMIP" refers to
this document.

While iDirect, Inc. strives to make the information in this document as accurate as possible,
iDirect makes no claims, promises, or guarantees about the accuracy, completeness, or
adequacy of the contents, and expressly disclaims liability for errors and omissions. No
warranty of any kind, whether implied, expressed, or statutory, including but not limited to
the warranties of non-infringement of third party rights, title, merchantability, or fitness for a
particular purpose, is given with respect to the contents of this document.

iDirect, Inc. reserves the right to change or update this document at any time.
OpenAMIP™ Standard Version 1.16 vii
T0000682 | Rev D

About
Certification
You may certify your compliance with the test suite yourself. If you do, you are free to use the
trademark "OpenAMIP™" freely for any product that you have certified.

Your use of the OpenAMIP™ trademark authorizes any OpenAMIP™ implementer to validate
your implementation and publish the results, referring to your product by company and
product name, if the implementer finds your implementation to be non-compliant. A finding
of non-compliance will not be published until thirty days after the OpenAMIP™ member
notifies you of the finding. At your option, the implementer's published finding of non-
compliance will include a reference to a statement in rebuttal by you.

Audience
The intended audience for this document is an engineering team responsible for integrating a
satellite terminal.

Contents
This document contains the following major sections:

• Introduction

This chapter gives an introduction about OpenAMIP.

• Protocol Specification

This chapter describes the protocol specifications, message types, and syntax.…

• Compatibility

This chapter describes the hardware and version compatibility.

• Test Suite

This chapter displays the sample protocols.

• Acronyms and Abbreviations

This list is meant to be generic within this document and may contain acronyms and
abbreviations not found in this manual and some terms may not be defined based on
industry standards.

• Glossary

This list is meant to be generic within this document and may contain entries not found
in this manual and some terms may not be defined based on industry standards.
viii OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

About
Document Conventions
This section illustrates and describes the conventions used throughout this document.

Getting Help
The iDirect Technical Assistance Center (TAC) and the iDirect Government Technical
Assistance Center (TAC) are available to provide assistance 24 hours a day, 365 days a year.
Software user guides, installation procedures, FAQs, and other documents that support iDirect
and iDirect Government products are available on the respective TAC Web site:

• Access the iDirect TAC Web site at http://tac.idirect.net

• Access the iDirect Government TAC Web site at http://tac.idirectgov.com

The iDirect TAC may be contacted by telephone or email:

• Telephone: 703.648.8151

Convention Description Example

Command Used when the user is required to
type a command at a command
line prompt or in a console.

Type the command:

cd /etc/snmp/

Terminal
Output

Used when showing resulting
output from a command that was
entered at a command line or on a
console.

crc report all

8350.3235 : DATA CRC [1]
8350.3502 : DATA CRC [5818]
8350.4382 : DATA CRC [20]

Screen
Reference

Used when referring to text that
appears on the screen on a
Graphical User Interface (GUI).

Used when specifying names of
commands, menus, folders, tabs,
dialogs, list boxes, and options.

1. To add a remote to an inroute group, right-click
the Inroute Group and select Add Remote.

The Remote dialog box has a number of user-
selectable tabs across the top. The Information
tab is visible when the dialog box opens.

Hyperlink Used to show all hyperlinked text
within a document or external
links such as web page URLs.

For instructions on adding a line card to the
network tree, see Adding a Line Card on
page 108.

WARNING: A warning highlights an essential operating or maintenance procedure,
practice, condition, or statement which, if not strictly observed, could result in
injury, death, or long term health hazards.

CAUTION: A caution highlights an essential operating or maintenance procedure,
practice, condition, or statement which, if not strictly observed, could result in
damage to, or destruction of, equipment or a condition that adversely affects
system operation.

NOTE: A note is a statement or other notification that adds, emphasizes, or
clarifies essential information of special importance or interest.
OpenAMIP™ Standard Version 1.16 ix
T0000682 | Rev D

http://tac.idirect.net
http://tac.idirectgov.com

About
• E-mail: tac@idirect.net

The iDirect Government TAC may be contacted by telephone or email:

• Telephone: 703.648.8111

• Email: tac@idirectgov.com

iDirect and iDirect Government produce documentation that are technically accurate, easy to
use, and helpful to our customers. Please assist us in improving this document by providing
feedback. Send comments to:

• iDirect: techpubs@idirect.net

• iDirect Government: techpubs@idirectgov.com

For sales or product purchasing information contact iDirect Corporate Sales at the following
telephone number or e-mail address:

• Telephone: 703.648.8000

• E-mail: sales@idirect.net
x OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

mailto: tac@idirect.net
mailto:techpubs@idirect.net
mailto:sales@idirect.net
mailto:techpubs@idirectgov.com
mailto:tac@idirectgov.com

1 Introduction
This document describes the Open Antenna Modem Interface Protocol (OpenAMIP™) for
satellite terminals. OpenAMIP is an ASCII message-based protocol to exchange information
between an antenna controller and a satellite modem. OpenAMIP allows the modem to
command the controller to seek a particular satellite. OpenAMIP also allows the modem and
controller to exchange information necessary to initiate and maintain communications
through the satellite.

OpenAMIP is not intended for any purpose except to permit a modem and a controller to
perform synchronized automatic beam selection. It is not a status logging system or a
diagnostic system. There is no explicit provision in OpenAMIP for security or validation. The
controller and the modem may choose to use any of several security measures at lower
protocol layers.
OpenAMIP™ Standard Version 1.16 1
T0000682 | Rev D

2 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Introduction
2 Protocol Specification
This chapter contains the following sections:

• Introduction on page 3

• Syntax on page 3

• Message Types on page 5

• Physical Layer on page 12

• Semantics on page 13

• Examples on page 15

2.1 Introduction
OpenAMIP is intended to be simple and flexible. Communications are in the form of messages
that are readable ASCII characters. A message consists of one or more space-separated
variable-length fields. The command is terminated by a new line <lf> character or by the
<cr><lf> sequence.

The first field is a message type, a single alphabetic character in the standard command set.
Each type of message requires a specific number of parameters. The last parameter may
optionally be separated from the new line by a comment that begins with a #. The # can be
followed by a string containing any characters other than a new line.

The OpenAMIP protocol is a peer protocol: neither side is the master. The messages are sent
through any of the several lower-level protocols, such as HTTP, TCP/IP over a LAN, UDP over a
LAN, or using a high-speed serial connection.

For broadest compatibility, most parameters, and the ability to use the parmeters, is
optional. Naturally, any unsupported parameter may result in an unsupported feature, but
basic operation should function. When transmitting a parameter list, no parameter may be
omitted from the beginning or the middle of the list; because parameters are not named, the
receiving device can only distinguish parameters from each other by their sequence.

2.2 Syntax
The OpenAMIP format specified here is in Backus-Naur form (BNF).

<msg>::=<msg_body><optional whitespace>'\n'
OpenAMIP™ Standard Version 1.16 3
T0000682 | Rev D

Syntax
 | <msg_body><optional whitespace>'#'<comment_body>'\n'

<comment_body>::=<non-newline>

 |<non-newline><comment_body>

<non_newline>::= {any printable character except '\n'}

<msg_body>::=<msg_type>

 | <msg_type> <param_list>

<param_list>::= <whitespace> <param>

 | <param><param_list>

<param>::= <binary>

 |<float>

 |<int>

 |<string>

<binary>::= '1'

 |'0'

<int>::= '-' <natural>

 | <natural>

<float::=<int>'.'<natural>

 | <int>

<natural>::= <digit>

 | <digit><natural>

<digit>::= '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'

<string> ::=<string_char>

 |<string_char><string>

<string_char>::={any printable character except ' ' and '\n'}

<optional whitespace>::=NULL|<whitespace>

<whitespace>::=<whitespace_char>|<whitespace><whitespace_char>

<whitespace_char>::= ' '|'\t'|'\r'
4 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Message Types

Ty r

A

B

C

E

F

2.3 Message Types

Table 2-1. Message Types

pe Description
No. of
Parameter(s)

Name of the Parameters Sende

Alive interval. Antenna should send a status message at
least this often. 0 means never repeat.

1 int interval, seconds M

Beat frequency oscillator (local oscillator) frequencies;
effective amount of down-conversion (Rx) or up-
conversion (Tx).

2 float Rx LO frequency, MHz

float Tx LO frequency, MHz

M

Carrier to Noise Ratio for Conical Scan.

Reporting rate is configured by "c" message. Default
"C" message rate is zero (if "c" message reporting rate
parameter is not present, the "C" message is disabled).
It is recommended to provide this message by UDP as a
separate stream.

5 float CNR (SNR) in dB, measured
on headers and pilots

M

float CNR (SNR) in dB, measured
on data

float time in seconds. This free-
running counter may wrap
around through zero
periodically; it is recommended
to use enough resolution for at
least an hour between wrap
events

int received carrier lock state.
Values are in the range 0..7,
where 0 means invalid, 1
means not locked, 7 means
fully locked, and values in
between are intermediate
states of lock (intermediate
state details are product-
specific).

float composite power, dBm,
measured at the IF input to the
modem.

Expected power. Maximum L-band Tx power to be
expected at the antenna, in dBm.

1 float max power M

Find the satellite. Antenna should now begin using the
satellite specified by S, P, B, X, and H. This command
overrides the N command. If the "forecast" parameter
is a 1, the ACU should respond with an 'f' message,
describing what would happen if the actual switch
were executed. For back-compatibility, an antenna
which doesn't support forecasting is expected to simply
execute the switch and respond with an 's' message.

1 Reserved M
OpenAMIP™ Standard Version 1.16 5
T0000682 | Rev D

Message Types

H

I

K

L

N

P

Ty r
Hunt frequency in MHz. Modem expects antenna to use
this L-band hunt center frequency when commanded.

Receive RF frequency can be determined through
combination of RX LO (LNB) frequency in the "B"
message and the center frequency in the "H"
message.

2 float frequency, float bandwidth M

ID of the modem type (optional) 2 string: modem manufacturer and
string: modem model

M

Maximum and minimum sKew of the beam short axis to
the geosynchronous arc, in degrees. Transmitter should
be disabled when these limits are exceeded. Minimum
skew defaults to zero if absent.

2 float max skew and float min
skew

M

Lock status of receiver. The modem should send this
message immediately when the status changes. The
modem should send this message periodically at
intervals specified by the antenna in the "a" message.

2 RX Lock State: binary 1 (locked)
or 0 (unlocked)

M

Antenna is free to transmit, or not. This command may
be used by the antenna to remove power from the Tx
amplifiers.

NOTE: The Tx Enable parameter can be used to
support a power calibration mode, in which
the final power amplifier is disabled or
terminated, but the preamplifier is still
enabled and capable of measuring RF power
at the preamp.

binary TX Enable: 1 (Tx on) or 0
(Tx off)

Non-geosynchronous mode. The antenna should be
aimed away from the geosynchronous arc. This is
intended to support installation tests such as power
measurements.

NOTE: The N command is intentionally redundant
with the L command; it is not intended to
be the sole means of preventing
interference during tests.

This command overrides the F command, but should
not cause the antenna to lose the parameters
previously specified by S, P, B, X and H.

0 Reserved M

Polarization. Modem commands antenna to use these
polarizations.

2 char Rx Polarization: L, R, V, or
H and char Tx polarization: L, R,
V, or H

M

Table 2-1. Message Types (continued)

pe Description
No. of
Parameter(s)

Name of the Parameters Sende
6 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Message Types

S

T

W

X

a

f

Ty r
Satellite longitude. Modem expects antenna to use this
satellite when commanded.

3 float longitude (degrees) M

Maximum excursion in satellite's latitude (for inclined-
orbit satellites)

float latitude variance (degrees)

Satellite's nominal polarization offset in degrees (for
skewed satellites)

float polarization skew (degrees)
From behind the dish, facing
towards the satellite; clockwise
is positive.

Transmit frequency. Modem intends to transmit at this
L-Band frequency and bandwidth

2 float Tx frequency, MHz and
float Tx bandwidth, MHz

M

Where (location) Interval. Antenna should send w
message immediately, and then repeat at least this
often. 0 means "never repeat"

NOTE: integer is a valid subset of the float type.
Non-integer time is used only for specialized highly
dynamic terminals, by agreement between modem
and antenna vendor. The modem shall not request
non-integer time unless the antenna is known to
support it. Decimal point and digits after decimal
may be omitted, unless modem and antenna both
support high-rate reporting for highly dynamic
terminals, and modem has requested rate > 1Hz.

1 int repeat interval, seconds.
Should be float, if the modem
requests antenna to transmit
"w" at rates higher than 1 Hz

M

eXtra hunt parameters. This is a fixed string to be
configured by the operator and sent as part of the
lookup. The antenna vendor specifies the string. If the
controller does not need this command, the modem
does not need to send it, but the modem may send it
anyway, in which case the controller will ignore it.

1 string M

alive interval. Antenna requests to see an L message
from the modem at least this often. 0 means "never
repeat".

1 int repeat interval, seconds A

Reserved Reserved

Table 2-1. Message Types (continued)

pe Description
No. of
Parameter(s)

Name of the Parameters Sende
OpenAMIP™ Standard Version 1.16 7
T0000682 | Rev D

Message Types

c

i

r

Ty r
conical scan setup (optional)

Sent when conical scan performed. The four floating
point values represent the times (UTC or GPS epochal)
of beam steering excursions from the previously
steered coordinates.

Azimuth and elevation delta scan excursions are pre-
determined by the antenna manufacturer and would
be on the order of ±0.25°.

The antenna may request periodic carrier-to-noise
estimates ("C" message) by setting the fifth parameter.
Default "C" message rate is zero (if "c" message
reporting rate parameter is not present, the "C"
message is disabled).

NOTE: Some terminal implementations will use only
the fifth parameter of this message; in that case, the
first four parameters may be set to zero, or may
optionally be set to describe the intended scan
timing.

5 float1 -AZ: see drawing,

float2 +EL: see drawing,

float3 +AZ: see drawing,

float4 -EL: see drawing, and

int reporting rate in Hertz for
“c” message

A

ID of the antenna type 2 string: manufacturer and string:
model

A

Reference frequency required for BUC and
LNB.Frequency is in MHz.

2 int frequency MHz A

Reference Used by Rx (R), Tx (T) or both (B) string Reference Used By: R, T,
or B (e.g. "r 10 B")

Table 2-1. Message Types (continued)

pe Description
No. of
Parameter(s)

Name of the Parameters Sende
8 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Message Types

s

Ty r
Status of the antenna. Antenna sends this immediately
in response to the F command from the modem, or
immediately whenever either of the two statuses
changes, or periodically. The period is set by the A
command from the modem.

"Not functional" means that the antenna cannot
currently operate and will never operate with this
configuration. This can be temporary (for example, an
illegal configuration) or permanent (for example,
motor frozen).

4 binary Antenna Functional:

1 - antenna functional

0 - antenna not functional

A

"Modem must not transmit" means that the antenna has
detected a condition (loss of lock, blockage, cable
unwrap, max skew exceeded) that does not require a
reconfiguration, but that does require the modem to
cease transmission.

Binary Modem May Transmit:

1 - Modem may transmit

0 - Modem must not transmit

The third parameter is the number of full sweeps the
antenna has performed while searching for the
satellite. It should be set to 0 upon receipt of an F
command, and incremented when the antenna has
performed a full sweep for the satellite. If omitted,
this parameter is assumed to be 0. This parameter
should be zero if an N command is more recent than an
F command.

int Search Count

The fourth parameter should be set to 0 if an F
command was sent more recently than an N command.
If omitted, this parameter is assumed to be 0.

NOTE: If the antenna cannot ensure it is ready for a
transmitter test without regulatory
violation, the third parameter should be set
to 0.

binary Tx Disabled: antenna

(1 - has, 0 - has not) successfully
disabled transmission toward the
geosynchronous arc (response to
N command). If this parameter
is "1" antenna is in a state to
support installation tests such as
power measurements; any power
from the transmitter test is
either terminated in a dummy
load or otherwise prevented
from interfering with satellites.

The optional fifth parameter is an enumerated
detailed status of the current antenna selected. See
Table 2-1for the enumerated codes.

int: 0 to 65535

The sixth parameter is reserved. Reserved

The seventh parameter is reserved. Reserved

Table 2-1. Message Types (continued)

pe Description
No. of
Parameter(s)

Name of the Parameters Sende
OpenAMIP™ Standard Version 1.16 9
T0000682 | Rev D

Message Types

w

Ty r
where the platform is located. Antenna sends this to
modem periodically. The period is set by the W
command from the modem. If the location is not valid,
the antenna may put 0 in the remaining parameters.

11 binary Location Valid:

1 - valid

0 - invalid

A

float latitude (degrees) negative
is south

The precision of the floating point numbers should
reflect the precision of the location information.
Typically six to eight digits is desirable for lat/lon
values. The antenna should send a w immediately if its
internal GPS status changes from "invalid" to "valid".

float longitude (degrees)
negative is west of prime
meridian

If the antenna does not know the time, the time
parameter should be set to 0.

The time parameter is mandatory if Doppler
compensation is to be applied.

NOTE: integer is a valid subset of the float type.
Non-integer time is used only for specialized highly
dynamic terminals, by agreement between modem
and antenna vendor. The modem shall not request
non-integer time unless the antenna is known to
support it. Decimal point and digits after decimal
may be omitted, unless modem and antenna both
support high-rate reporting for highly dynamic
terminals, and modem has requested rate > 1Hz. If
provided, timestamp must correspond to the
latitude/longitude values. If omitted, all following
values must also be omitted, and Doppler
compensation is not possible.

float: time (GPS seconds) time
in seconds since the GPS
epoch.

If the altitude parameter is not set, it is assumed to be
zero.

float altitude (meters)

float heading referenced to true
north (degrees)

float GPS computed speed (m/s)

float pitch angle (degrees).
Positive is up, negative is down.

float roll angle (degrees).
Positive is rolled to starboard,
negative is rolled to port.

float yaw angle (degrees).
Positive is inclined to
starboard. Negative is inclined
to port.

Table 2-1. Message Types (continued)

pe Description
No. of
Parameter(s)

Name of the Parameters Sende
10 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Message Types

Ty r
Antenna Status Codes
displays the enumerated antenna status codes.

float skew angle (degrees).
Positive is CW when facing
satellite from ground. Negative
is CCW when facing satellite.

Table 2-1. Message Types (continued)

pe Description
No. of
Parameter(s)

Name of the Parameters Sende

Table 2-2. Enumerated Antenna Status Codes

Code Description

0 Modem May Transmit - No problems detected.

1 Cable Unwrap - Antenna has reached its Azimuth motion limit and is performing
an azimuth move away from the limit; no longer tracking the satellite.

2 Blockage Zone - The Antenna is tracking in a Blockage Zone defined for the
vessel where obstructions can inhibit or degrade satellite communication.

3 RF Hazard Zone - The Antenna is tracking in a No Transmit area defined for the
vessel for RF radiation hazard reasons.

4 Sidelobe Check - The Antenna is performing a search pattern to determine if it
is has peaked the RF signal on the main beam or the sidelobe.

5 Elevation Limit - The Antenna is tracking above or below the specified
elevation limits for the system.

6 AZ/SKEW Limit - The Antenna is tracking and the Azimuth or Skew Pointing
Error exceeds the transmit limit indicating it may be mispointed (primarily for
keyhole tracking).

7 Gyro Cap - The Antenna is tracking and the Azimuth or Elevation acceleration
exceeds the transmit limit indicating it may be mispointed.

8 Ant Search State - The Antenna is commanded to go to a new satellite and is
searching for that satellite.

9 RSSI Below Threshold - The Antenna is tracking and it detects that the RSSI has
fallen below RSSI valid threshold for a duration of time as dictated by FCC
regulations.

10 Initializing - The Antenna boots up or gets restarted and is in its initialization
process.

11 LNB Voltage Error

12 BUC Voltage Error

13 RF Configuration Error

14 RF Communication Error

15 On Ground (aircraft is prohibited from transmitting)
OpenAMIP™ Standard Version 1.16 11
T0000682 | Rev D

Physical Layer
2.4 Physical Layer

2.4.1 TCP Interface
A modem and controller may communicate using TCP either ways. The method of discovering
the IP address and TCP port is outside the scope of OpenAMIP. In the reference
implementation, the antenna listens on a configured TCP port and accepts calls from a
configured (range of) modem IP addresses. The modem initiates a TCP connection to a
configured antenna IP address and TCP port.

Whenever the TCP connection is disconnected, the antenna sets its keep-alive timers to
infinity. When a new TCP connection is established, the modem will send an ‘A’ to the
antenna, and the antenna will send an 'a' to the modem. Typically each side will then set a
disconnect timer to three times the requested interval. For example, the modem might send
"A 3" and set its disconnect timer to 9 seconds. If at any time after that, the modem waits
more than 9 seconds to receive an "s" message, the modem will break the TCP connection. It
may then choose to periodically (or at random intervals) attempt to make a new TCP
connection. Similarly, the antenna might send "a 2" and then break the connection if it must
wait more than 6 seconds between received "L" messages.

Neither the antenna nor the modem is obliged to accept more than one TCP connection at a
time, but this is not prohibited. In a system with two modems, one may be acting as a backup.
In this arrangement, the antenna should only honor satellite selection requests from one
modem.

TCP is a "stream-oriented" protocol: there is no particular mapping of an OpenAMIP message
into an IP packet. A single packet may contain a fragment of a message, a complete message,
or multiple messages. In the reference implementation, the modem sends an entire initial set
of seven messages in a single POSIX "write" command immediately after opening the
connection. On most POSIX systems, this will result in a single TCP/IP packet. The reference
receiver implementation accumulates characters until a new line is found and then processes
the result as an OpenAMIP message. Accumulation of the next message starts with the first
character after the new line.

2.4.2 UDP Interface
Each message fits in a single UDP packet. A packet may contain more than one message, but
any given message must be fully contained within one packet. The antenna has a configured
IP address and well-known port, as does the modem. The initial state of the OpenAMIP
interface is "idle" (that is, no keepalive) until the partner sends a keepalive timer. The
interface reverts to the "idle" state if three keepalives are missed.

In Version 1.9, the modem may create a UDP stream for the "C" message, alongside the
primary TCP connection for all other OpenAMIP messages. Because the "C" message will be

16 Geographic Restriction for regulatory reasons

17 HW Mute Switch (e.g. for safety interlock).

Table 2-2. Enumerated Antenna Status Codes

Code Description
12 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Semantics
sent at a relatively high rate (tens of Hertz), the UDP stream is more practical; it avoids TCP
handshaking overhead. It is recommended that the modem and antenna use the same IP
address and port for both TCP and UDP connections. Because TCP and UDP use separate
address spaces, this does not cause any conflict.

2.4.3 Asynchronous Serial Interface
This is beyond the scope of OpenAMIP. However, SLIP can be used to establish an IP connection
on the serial link. Alternatively, any packet-over-serial technique may be used. (Note that a
checksum should be used here.)

2.5 Semantics
The protocol is primarily intended to convey state change information based on external
events. The following notes are intended to provide functional guidance for various common
events and message sequences. It is not intended to be a comprehensive list of messages nor
a syntax dictionary.

To comply with regulatory constraints, the modem must disable its transmitter within 100ms
when the antenna loses lock on a satellite, and must also disable the transmitter immediately
when a blockage occurs. The antenna must minimize the interval between detecting a change
in condition and sending the status message to the modem. Similarly, the antenna may choose
to use the modem lock signal as part of its satellite search. The modem must also minimize
the interval between detecting the condition and sending the message to the controller.
Status changes should be reported within 10ms. However, since this will not be practical on a
slow serial link, the links are deprecated.

Prior to any communication between the modem and the controller, the OpenAMIP state is
unspecified. The timers are all set to infinite. The modem initiates communications by
sending the commands needed to deliver the satellite parameters to the controller. It then
sends an "F" message.

When the controller receives an "F" message, it must respond within 10 milliseconds with an
"s" message. This is necessary to ensure regulatory compliance in the case when the modem
needs to mute. The controller must also send a status every "keepalive" interval, and every
time the status changes. When the controller responds to an "F" message, the "may transmit"
status must reflect the status with respect to the newly-selected satellite parameters. This
means that if the modem has just commanded the antenna to "Find" the satellite that it is
already tracking and is already locked on, then the immediate status can be "may transmit".
However, if the antenna is already tracking a satellite and is successfully locked to it, and the
modem then sends new parameters and issues a new "Find" command, the controller must
immediately send a status of "must not transmit" because it is not locked to the new satellite
(it is locked to the old satellite). After the antenna locks to the new satellite, it will send a
new status message indicating that the modem may transmit.

The modem should send an "L" message whenever the modem lock changes. It should also
send the "locked" status every time its keepalive timer expires. Whenever the modem sends
the "L" message for any reason, it restarts its keepalive timer.

When the modem issues a "W", the controller immediately responds with a "w". The controller
responds thereafter every w seconds (zero seconds means never). If the controller sends a "w"
OpenAMIP™ Standard Version 1.16 13
T0000682 | Rev D

Semantics
to the modem which indicates that the location information is invalid, the controller should
send a new "w" message immediately as soon as valid location information becomes available.

Latitude and longitude are reported in floating point decimal degrees. The range for latitude
is -90.0 to 90.0, where -90.0 is the South Pole. The range for longitude is 360.0 to 360.0,
where negative is west from the prime meridian and positive is east from the prime meridian.
The overlap is intentional: the sender is free to use zero to 360 or -180 to 180 (or even -360 to
0 or a mixed system). The receiver must be able to handle the full -360 to 360. Leading zeros
are optional for the sender, except that the number must have at least one digit before the
decimal point. Trailing zeros are optional for the sender, except that the number must have at
least one digit after the decimal. The receiver must be able to handle leading and trailing
zeros correctly. If the fractional part is zero, the number may be specified as an integer (that
is, without a decimal point). Note that the syntax does not permit the use of the "+"
character.

The precision of the latitude and longitude is not specified by the OpenAMIP syntax; the
number of digits after the decimal point is arbitrary. However, the sender should provide as
much precision as is actually available. As a practical matter, OpenAMIP contemplates the
ability to use this information for logging and transmission restrictions as mandated by
regulatory authorities, so accuracy to about one kilometer is needed: this implies that
latitudes and longitudes to a precision of one thousandth of a degree are needed.

If the modem issues a "P", "B", or "F" command that is incompatible with the antenna
hardware, the antenna may either ignore the incompatible parts of the command or may set
the "functional" status to "not functional".

The "K" message conveys the maximum skew of the short axis of a non-circular beam to the
geosynchronous arc. If the antenna has a beam shape that is radially symmetric about the
bore sight, this parameter may be ignored. Otherwise, the antenna must use the current skew
as a factor in computing the "must not transmit" or "may transmit" status. When all other
factors permit transmission, the antenna will immediately send a status message with a status
of "must not transmit" when the angle transitions from below to above the maximum skew,
and will immediately send a status message with a status of "may transmit" when the angle
transitions from above to below the maximum skew. In contrast to some other messages, the
"K" message takes effect immediately and the modem may send a new "K" message with a new
max skew angle at any time. The "K" message also includes a minimum skew parameter, to
support protection of non-geostationary satellites. The minimum skew parameter operates
analogously to the maximum skew parameter; the antenna controller should send a status of
"must not transmit" when the skew is less than this value.

When the antenna reports with an "s" message that the antenna is functional, it indicates that
the antenna should currently be working. "Non-functional" means that the antenna is not
currently in service. This does not include blockage, loss of lock, system initialization, loss of
heading information, cable unwrap, or any condition that can correct itself without
intervention. It does include detection of a fatal mechanical failure, or an operator command
to the antenna controller from its front panel or other source, or an illegal configuration.

When the modem detects this status, it will not attempt to recover by, for example, switching
to a different satellite or clearing and re-establishing the OpenAMIP connection. The modem
waits until the antenna sends a "functional" message. The antenna provides a "may transmit"
when it is locked on the satellite and ready to transmit. The antenna signals "must not
transmit" if there is any reason the modem should not transmit: blockage, loss of lock, cable
unwrap, sea too rough, etc.
14 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Examples
2.6 Examples
This section is intended to describe the purpose of each message. The formal syntax and
semantics are described in later sections. Note that the messages here make use of the
"comment" syntax. It is unlikely that operational implementations of the protocol will ever
transmit messages with comments, but they are useful in descriptive documents such as this
one and in test scripts. Typically, implementations of the receive side of the protocol will
properly detect and ignore comments.

The modem must be able to convey all of the information needed by the controller to
describe a satellite. This must be sufficient for the controller to identify the satellite and to
command the controller to find the satellite.

2.6.1 Messages from Modem to Antenna Controller
"Keepalive" messages are sent to the modem regularly to ensure that communications
connectivity with the controller are not lost.

A 10 # Alive: Antenna should resend status "s" every N seconds.

B 9750.0 12800.0 # "Beat Frequency": downconversion & upconversion
offsets: floating point in MHz.

E 0.5 # Expected power: Maximum L-band Tx power to be expected at the
antenna, in dBm.

F #F: Find. Use the recent S, P, B, X, and H parameters.

H 1123.321 0.256 # Hunt: floating point center frequency and bandwidth
in MHz.

The modem informs the controller when the modem has detected the downstream carrier:

I iDirect 5100 # ID: modem manufacturer and type strings.

K 45 15 # sKew: maximum and minimum skew. The antenna controller must
disable transmission when outside these angles (in degrees). This is
typically used with non-circular apertures.

L 1 1 # Lock status: Rx locked (1 is locked, 0 is unlocked), Tx OK (1
means antenna MAY transmit; 0 means antenna MUST NOT transmit).

N # Non-geosynchronous mode. No transmission. The antenna should be
placed in a state to aimed away from the geosynchronous arc. This is
intended to support installation tests such as power measurements.

P L R #Polarization: H, V, L or R for Rx and Tx, respectively.

S -20.1 1.0 3.5 # Satellite longitude: All parameters are floating
point degrees, "-" is West. Wander in latitude is 1.0. Polarization
skew 3.5.

T 1450 4.5 # Transmit frequency: The modem intends to transmit at this
L-Band frequency and bandwidth.

The modem requests periodic location information:

W 1 # Where: Antenna should send "w" location report every N seconds.
OpenAMIP™ Standard Version 1.16 15
T0000682 | Rev D

Examples
X nid=1234 # Xtra string: vendor-specific string for antenna
controller.

2.6.2 Messages from Antenna Controller to Modem
The controller must be able to provide status information to the modem such as, when it is
locked onto the satellite, when it is functional and unblocked, how many attempts has it
made to search for the satellite and (for installation support) when it is in a safe state for
dummy transmission measurements. The controller sends an "s" message immediately after
receiving an "F" message, and periodically at the interval defined by the "A" message:

a 60 # alive: modem should send keepalive messages every N seconds.

c 0.25 0.25 0.33 0.33 # conical scan setup: not supported by iDirect;
included as a placeholder for compatibility with other vendors'
systems.

i YoyoDyne 1234 # ID: antenna controller manufacturer and type strings

r 10 B # reference frequency required for BUC and LNB; not currently
supported by iDirect; included as a placeholder for compatibility with
other vendors' systems.

s 1 1 1 0 # s: four parameters: functional, OK-to-transmit, searched
once, not in transmitter test mode.

The antenna controller sends GPS information to the modem:

w 1 -10.123 20.235 123456789 10000 91.0 223.52 0.10 -0.51 91.0 # where:
location report. valid, lat, lon, time, altitude, heading, speed,
pitch, roll, yaw.

The "w" message parameters require more explanation:

• Valid (1) or invalid (0)

• Latitude in floating point degrees (South is negative)

• Longitude in floating point degrees (West is negative)

• GPS time in seconds; if the antenna does not have GPS time, set this to zero

• Altitude, heading, speed, pitch, roll, yaw are not physically required for system
operation, but support logging for regulatory compliance and system performance
management
16 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Version Compatibility
3 Compatibility
This chapter contains the following sections:

• Version Compatibility on page 17

• Modified OpenAMIP on page 18

• Hardware Compatibility on page 18

3.1 Version Compatibility
New versions of the OpenAMIP protocol may be published. New versions will be strict
supersets of older versions and may extend the protocol in only two ways:

• A new version may add new message types

• A new version may add new parameters to the end of an existing message type

Do not use any other syntactic extensions. Any extension to the semantics of the protocol
must not affect the semantics of earlier versions. The intent of this specification is that any
older implementation of the protocol can interoperate with any newer implementation
without loss of any of the older functionality. A compliant implementation of OpenAMIP must
ignore any unexpected message type that it receives, and must ignore any unexpected
parameters at the end of a message. Furthermore, a compliant implementation must operate
successfully if it receives a message with too few parameters. Parameters that are added to
the protocol in version 1.5 or later will have default values that the receiver will use if a
message does not provide the parameter.

New versions of the protocol are required to be backward-compatible with older versions.
This is ensured by requiring that the meanings of parameters never change from version to
version. New parameters may be added to a message, and new messages may be added. The
receiver is required to ignore extra parameters and unknown messages; this allows an older
receiver version to work with a newer sender. The receiver is required to operate properly
when it receives a message that does not have enough parameters; this allows a newer
receiver version to work with an older sender (the older version will not implement
functionality that requires the newer version), but the older version will continue to provide
its functionality when operating with a partner that is using a newer version.
OpenAMIP™ Standard Version 1.16 17
T0000682 | Rev D

Modified OpenAMIP
3.2 Modified OpenAMIP
Any antenna or modem manufacturer can extend the protocol by creating an extended type
field. The extended type field consists of the manufacturer's name (with no spaces) followed
by a colon, followed by a type (with no spaces). If a modem or antenna controller receives a
message of unknown type, the modem or antenna controller will ignore the message. If the
messages are optional for operation of the equipment, then the protocol still qualifies as
"unmodified" OpenAMIP. If the messages must be used for a particular antenna or modem,
then the resulting implementation must be called "modified OpenAMIP".

Examples:

Yoyodyne:NID 1132 # additional search parameter

iDirect:stow 1 # command specified by iDirect

3.3 Hardware Compatibility
OpenAMIP is intended for a typical installation with a specific modem and a specific antenna
are installed and configured to work together. The protocol does not make provision for auto-
discovery or parameter negotiation. These are installation issues and the protocol was
developed to focus on operations. It is the responsibility of the installer to assure that the
parameters are compatible. Essentially all incompatibilities will cause loss of service and the
need for intervention, so the mechanisms needed for auto-negotiation have no practical
benefit. The obvious examples of incompatibilities occur in the "P", "H", and "B" commands.
An antenna that is mechanically configured for LHCP and that has no polarization switch
hardware will not operate correctly for RHCP or linear polarization. Similarly, an antenna with
a mechanical polarizer will not be able to select Tx polarization independently from Rx
polarization. Similarly, an antenna whose downconversion offset frequency ("LNB local
oscillator") is fixed cannot implement a B command to change to another frequency, and more
generally an antenna with a selectable downconversion frequency can only change to one of a
small set of downconversion frequencies. Finally, an antenna whose tracking receiver supports
a specific set of (one or more) bandwidths cannot select an arbitrary hunt bandwidth. It is the
responsibility of the installer to ensure that the modem does not send parameters that the
antenna does not support. For the hunt bandwidth, the antenna may choose to operate with a
different hunt bandwidth. Do not operate the antenna for other unsupported "P", "B", and "H"
parameters. When the antenna does not have a controllable down conversion frequency, the
antenna may choose to ignore the "B" command. The modem may choose to not send the B
command.
18 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

Modem Module Reference Design
4 Test Suite
This chapter contains the following sections:

• Modem Module Reference Design on page 19

• OpenAMIP_sim.c on page 19

• OpenAMIP_modem.c on page 30

iDirect provides reference implementations in C. No representations are made that these are
suitable for use in any product. Semantics may be validated by executing a script that
emulates a controller or a modem. The scripts are written in POSIX-compliant C. Code for the
test suite was developed from the reference implementation. The source code for the
reference implementations and the test scripts is copyrighted by iDirect but is licensed at no
cost for use for any purpose.

4.1 Modem Module Reference Design
The modem implements the protocol as follows: The modem reads the antenna's IP address
and TCP port number from a configuration file. The modem attempts to connect to the
antenna through TCP: if the connection fails, the modem attempts to re-establish it.
Whenever the modem succeeds in connecting to the antenna, it sends a set of setup
commands. These commands are sent "back-to-back" with no intervening commands and
without waiting for responses: the commands are "S", "H", "P", "B", "X", "A", "F", "W", and "L".
The modem then waits for messages from the antenna. The modem sends an "L" whenever its
lock state changes. If the modem receives an "a", it will send an L periodically. If the modem
does not receive an "s" or a "w" at the expected periodic intervals (based on its "A" and "W"
requests), it clears the TCP connection and attempts to re-establish it, and the cycle repeats.
If the modem decides to switch to a different satellite, it sends the setup sequence again.

4.2 OpenAMIP_sim.c
/*

 "Reference implementation" of the Antenna controller's
OpenAMIP(tm) protocol processing code.

 ---- begin notice----

 Copyright (c) 2007, 2008 iDirect technologies iDirect hereby
licences anyone to use this code, modified or unmodified, for any
OpenAMIP™ Standard Version 1.16 19
T0000682 | Rev D

OpenAMIP_sim.c
 purpose, providing that this notice is retained in the source
code.

 The use of the trademarked name OpenAMIP(tm) is restricted and
may not be used except under the terms of a separate licence: see
www.OpenAMIP.org for details.

 In particular, you are prohibited from using the name OpenAMIP
to describe a protocol that does not comply with the standard.
Therefore, if you modify the code so that the result is not an
implementation of the protocol, you must remove any output
messages that refer to the name.

 ---- end notice---

 This program is a trivial implementation for the Antenna-
controller end of the OpenAMIP protocol. It receives and parses
input from a modem and it responds properly. The program makes
almost no attempt to simulate a real antenna controller.

 The only such "simulation" is the response to an "F" message.
If none of the satellite values have changed since the prior "F"
message, then the "locked" status is true. If any of the satellite
values have changed, the "locked" status is false and remains
false for 20 seconds. Note that we respond to an "F" message with
an "s" response that reflects the new "locked" status, not the old
locked status.

 The program is "forgiving", in that it ignores any message type
that it cannot understand. This is as specified by the protocol
definition document.

 Optionally, the program can log unknown messages to the
standard output, and/or send a comment message back to the modem
when it receives a unknown message.

 The program should compile and run on any POSIX-compliant
system, but has been tested only on Linux (specifically RHEL) and
Cygwin under Windows.

 */

#include <sys/select.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <string.h>
20 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_sim.c
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define FALSE 0

#define TRUE 1

static char * version="2008-02-14";

// satellite location parameters from the modem:

static float freq=0.0,hunt_bw=0.0;

static char pol_rx=0,pol_tx=0;

static double sat_lon=0.0,sat_io_lat=0.0,sat_skew=0.0;

static double rx_lo=0.0,tx_lo=0.0;

static int modem_state,tx_ctl;

static int changed=TRUE; //internal variable to track whether or
not we changed a satellite param.

// status variables to report to the modem.

static int locked=FALSE;

static int functional=TRUE;

static int blocked=FALSE;

// arrays for the timer event system.

#define FAR_FUTURE ((time_t)0x7FFF0000)

enum {SWING,GPS,STAT,MAXTIMER};

static int intervals[MAXTIMER];

static int timers[MAXTIMER];

//commandline parameters:

static int verbose=TRUE;

static int tcp_port=5005;

static int my_ip=INADDR_ANY;

static double lat,lon;
OpenAMIP™ Standard Version 1.16 21
T0000682 | Rev D

OpenAMIP_sim.c
//Handle a message received from the modem. A "Message" is a
sequence of

// characters ending in a newline.

static void process_message(char *buff,int now)

{

 // define the message keywords. The current keywords are all
single character, but

 // the syntax permits a variable-length word, so use an
enumerated word list to

 // simplify any later expansion of the protocol.

 static char *keywords[]=

 {"S", "H","P", "F", "W", "A", "L", "B",
"X", 0};

 enum
{SAT,HUNT,POL,EXECUTE,LOC_TIME,STAT_TIME,MODEM_STAT,BAND,XTEND,MAX
};

 int len;

 int i,np;

 double tmpfla,tmpflb,tmpflc;

 char tmpchra, tmpchrb;

 len=strcspn(buff," \n#\r\t"); // get the length of the message
keyword.

 if(len==0)

 return; // no keyword--ignore the message:
it's a comment

 for(i=0;keywords[i]!=0;i++)

 if((len==strlen(keywords[i]))

 &&(0==strncmp(keywords[i],buff,len))

)

 break;

 switch (i)

 {case SAT:

 tmpfla=tmpflb=tmpflc=0.0; //preload defaults;

 np=sscanf(buff+len,"%lf %lf %lf" ,

 &tmpfla,&tmpflb,&tmpflc); //get new satellite
lon, io_lat, and skew

if((tmpfla!=sat_lon)||(tmpflb!=sat_io_lat)||(tmpflc!=sat_skew))
22 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_sim.c
 changed=TRUE; //set "changed" if
different

 sat_lon=tmpfla;

 sat_io_lat=tmpflb;

 sat_skew=tmpflc;

 break;

 case HUNT:

 np=sscanf(buff+len,"%lf %lf",&tmpfla,&tmpflb); //get new
hunt frequency

 if((tmpfla!=freq)||(tmpflb!=hunt_bw))

 changed=TRUE; //set "changed" if
different

 freq=tmpfla;

 hunt_bw=tmpflb;

 break;

 case POL:

 tmpchra='H',tmpchrb='V';

 np=sscanf(buff+len,"%c %c",&tmpchra,&tmpchrb); //get new
pol.

 if((tmpchra!=pol_rx)||(tmpchrb!=pol_tx));

 changed=TRUE; //set "changed" if
different

 pol_rx=tmpchra;

 pol_tx=tmpchrb;

 break;

 case BAND:

 np=sscanf(buff+len,"%lf %lf",&tmpfla,&tmpflb); //get new
hunt frequency

 if((tmpfla!=rx_lo)||(tmpflb!=tx_lo))

 changed=TRUE; //set "changed" if
different

 rx_lo=tmpfla;

 tx_lo=tmpflb;

 break;

 case XTEND:

 break;

 case EXECUTE:

 if(changed) // move to new sat if
it really is new.
OpenAMIP™ Standard Version 1.16 23
T0000682 | Rev D

OpenAMIP_sim.c
 { timers[SWING]=now+20; // tell the modem
after we lock.

 locked=0; // we are not locked on
the new sat.

 }

 changed=FALSE;

 timers[STAT]=now; // post an event to
send a status message immediately.

 break;

 case LOC_TIME:

 timers[GPS]=now; //post an event to
send a GPS message immediately

 np=sscanf(buff+len,"%d",&intervals[GPS]); //save the new GPS
reporting interval.

 break;

 case STAT_TIME:

 timers[STAT]=now; // post an event to
send a status message immediately.

 np=sscanf(buff+len,"%d",&intervals[STAT]); //save the new
status reporting interval

 break;

 case MODEM_STAT:

 np=sscanf(buff+len,"%d %d",&modem_state,&tx_ctl); //save the
new modem state and tx ctl

 break;

 case MAX: //ignore unknown
messages

 break;

 }

}

static void send_msg(char *buff,int sock)

{ write(sock, buff, strlen(buff)); // send message

 if(verbose)

 printf("--> %s",buff);

}

/* We are about to go back to sleep. See if we need to do anything
first,

 and then decide when we should wake back up.
24 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_sim.c
 We get the current time and check against each timer. If any
timer has expired, we process that timer, which may set another
timer. After expired timers are processed, we find the next timer
that will expire and compute and return the interval from now
until then.

*/

static time_t process_timers(int sock,time_t now)

{

 int i;

 time_t next=now+3600; //preload a long sleep interval.

 int avail=1;

 char buff[100];

 if(timers[GPS]<now)

 { sprintf(buff,"w %d %3.3f %3.3f %d\n",avail,lat,lon,(unsigned
int)now);

 send_msg(buff,sock);

 timers[GPS]=now+intervals[GPS];

 }

 if(timers[STAT]<now)

 { sprintf(buff,"s %d %d\n",functional,locked&!blocked);

 send_msg(buff,sock);

 timers[STAT]=now+intervals[STAT];

 }

 if(timers[SWING]<now)

 { locked=1;

 timers[STAT]=now;

 timers[SWING]=FAR_FUTURE;

 }

 for (i=0;i<MAXTIMER;i++)

 if(timers[i]<next)

 next=timers[i];

 return (next-now);

}

/* event loop for connected state. Entered when a TCP connection
is established, exits when the connection dies.

 sleep until data arrives or a timer expires. If data arrives,
the routine accumulates it
OpenAMIP™ Standard Version 1.16 25
T0000682 | Rev D

OpenAMIP_sim.c
 and delivers it one line at a time to the message processor.
Timer expiries go to the

 timer processor, which computes the next sleep interval.

 */

static void handle_events(int sock)

{

 static char readbuf[1000];

 static char *scan_pt=readbuf;

 static char *read_pt=readbuf;

 char *eol;

 fd_set read_fds;

 struct timeval now;

 struct timeval tv;

 int retval;

 int i;

 int len;

 gettimeofday(&now,0);

 for(i=0;i<MAXTIMER;i++)

 { intervals[i]=3600;

 timers[i]=FAR_FUTURE;

 }

 while(TRUE)

 { FD_ZERO(&read_fds);

 FD_SET(sock,&read_fds);

 tv.tv_sec=process_timers(sock,now.tv_sec);

 tv.tv_usec=0;

 retval=select(sock+1,&read_fds,NULL,NULL,&tv); //sleep here

 if(retval==-1)

 { perror("select()");

 exit (1);

 }

 gettimeofday(&now,0);

 if(retval==1)

 { if(0>=(len = read(sock,read_pt, readbuf+999-read_pt)))

 return; //connection is closed

 read_pt+=len;

 *read_pt=0;
26 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_sim.c
 while(0!=(eol=index(scan_pt,'\n'))) //is there a line in
the buffer?

 { *eol=0;

 if(verbose)

 printf("<-- %s\n",scan_pt);

 *eol='\n';

 process_message(scan_pt,now.tv_sec);

 scan_pt=eol+1;

 if(scan_pt>=read_pt)

 { read_pt=scan_pt=readbuf;

 *read_pt=0;

 }

 }

 }

 }

}

#define err(s) printf("error: %s\n",s)

static int process_args(int argc, char **argv)

{

 char *parm;

 char c;

 *(argv++);

 while (--argc)

 { parm= *(argv++);

 if (parm[0]=='-')

 { while((c=*++parm))

 switch(c)

 { case 'p':

 tcp_port=atoi(*(argv++));

 if(parm[1]!='\0')

 { err("\'p\' must be last");

 return(FALSE);

 }

 if(!argc--)

 { err("missing port number after \'p\'");
OpenAMIP™ Standard Version 1.16 27
T0000682 | Rev D

OpenAMIP_sim.c
 return(FALSE);

 }

 break;

 case 'i':

 if(!argc--)

 { err("missing ip address after \'i\'");

 return(FALSE);

 }

 if(-1==(my_ip=inet_addr(*(argv++))))

 { err("ip address is invalid");

 return(FALSE);

 }

 break;

 case 'v':

 verbose=TRUE;

 break;

 case 'l':

 argc-=2;

 if(argc<=0)

 { err("\'l\' must be followed by two parameters");

 return(FALSE);

 }

 lat=atof(*(argv++));

 lon=atof(*(argv++));

 break;

 default:

 err("unknown flag");

 //fall through

 case 'h':

 printf("OpenAMIP(TM) Antenna controller simulator
version %s\n"

 "Usage: OpenAMIP_sim [options...] \n"

 " [options...] are any combination of:\n"

 " -i <my_ip> --ip address on which to
listen.\n"

 " -p <port> --listen on this port\n"

 " -l <lat> <lon> --antenna's lat and
lon\n"

 " -v --verbose\n"
28 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_sim.c
 " -h --print this message\n",

 version

);

 return(FALSE);

 }

 }

 }

 return(TRUE);

}

/* main program. Contains the listen/accept loop.

 */

int main(int argc, char* argv[])

{

 int sock; // handle to connected socket

 int server_sock; // handle to listen socket

 struct sockaddr_in

 address; // Internet socket address stuct

 socklen_t addr_size =sizeof(address);

#define SOCKET_ERROR -1

#define QUEUE_SIZE 5

 process_args(argc,argv);

 printf("Starting TCP server\n");

 server_sock = socket(AF_INET, SOCK_STREAM, 0); // make a socket

 if(server_sock == SOCKET_ERROR)

 { printf("ERROR: Could not make a socket\n");

 return 1;

 }

 // fill address struct

 address.sin_addr.s_addr = my_ip;

 address.sin_port = htons(tcp_port);

 address.sin_family = AF_INET;

 if(SOCKET_ERROR==bind(server_sock, (struct sockaddr*)&address,
addr_size))

 { printf("ERROR: Could not bind socket\n");

 return 1;
OpenAMIP™ Standard Version 1.16 29
T0000682 | Rev D

OpenAMIP_modem.c
 }

 getsockname(server_sock, (struct sockaddr *) &address,
&addr_size);

 // establish listen queue

 if(SOCKET_ERROR==listen(server_sock, QUEUE_SIZE))

 { printf("ERROR: Could not listen\n");

 return 1;

 }

 // we are now a TCP server. listen for a connection. If it
closes,

 // listen for a connection...

 for(;;)

 { while(SOCKET_ERROR==(sock = accept(server_sock, (struct
sockaddr*)&address, &addr_size)))

 printf(" Accept failed with %s\n",strerror(errno));

 if (verbose)

 printf("---- Opened socket\n");

 // now go handle all the events. The routine will not return
here until the call is disconnected

 handle_events(sock);

 // close socket

 if(verbose)

 printf("==== Closing Socket\n");

 if(SOCKET_ERROR==close(sock))

 { printf("ERROR: Could not close socket\n");

 return 1;

 }

 }

 return 0;

}

?

4.3 OpenAMIP_modem.c
/*

 "Reference implementation" of the modem's OpenAMIP(tm) protocol
processing code.

 ---- begin notice----

 Copyright (c) 2007, 2008 iDirect technologies
30 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_modem.c
 iDirect hereby licences anyone to use this code, modified or
unmodified, for any purpose, providing that this notice is
retained in the source code.

 The use of the trademarked name OpenAMIP(tm) is restricted and
may not be used except under the terms of a separate licence: see
www.OpenAMIP.org for details.

 In particular, you are prohibited from using the name OpenAMIP
to describe a protocol that does not comply with the standard.
Therefore, if you modify the code so that the result is not an
implementation of the protocol, you must remove any output
messages that refer to the name.

 ---- end notice---

 This program is a trivial implementation for the modem end of
the OpenAMIP protocol. It is intended as a simple example for aid
in implementing the protocol in a modem and as a simple tester
when developing the protocol for an antenna. It makes a TCP
connection to the antenna controller and then sends a set of
messages to select a satellite and solicit periodic status and GPS
messages. It receives and prints all messages from the antenna
controller.

 The program is "forgiving", in that it ignores message types
that it cannot understand. This is as specified by the protocol
definition document.

 Optionally, the program can log unknown messages to the
standard output, and/or send a comment message back to the antenna
controller when it receives a unknown message.

 The program should compile and run on any POSIX-compliant
system, but has been tested only on Linux (specifically RHEL.)

 */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <string.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>
OpenAMIP™ Standard Version 1.16 31
T0000682 | Rev D

OpenAMIP_modem.c
#include <sys/select.h>

#include <sys/time.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <errno.h>

#define FALSE 0

#define TRUE 1

static char * version="2008-02-14";

// satellite location parameters from the modem:

static float freq_center=1000.0, freq_bandwidth=1.0;

static char pol_rx='V',pol_tx='H';

static double sat_lon=123.5, sat_io_lat=0.0, sat_pol_skew=0.0;

static double rx_lo=10750.0,tx_lo=14000.0;

static int modem_state=FALSE;

// status from the antenna

static int locked=FALSE;

static int functional=FALSE;

static int blocked=FALSE;

// arrays for the timer event system.

#define FAR_FUTURE ((time_t)0x7FFF0000) //64K seconds before
rollover, in 2038

enum {LOCK, //timer before sending our next "L" to
antenna.

 GPS, //we expect a "w" from the antenna before
this expires

 STAT, //we expect a "s" fron the antenna before
this expires

 MAXTIMER

 };

static int intervals[MAXTIMER]; //timer reload values

static int timers[MAXTIMER]; //next expiry time for each
timer
32 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_modem.c
//commandline parameters:

static int verbose=TRUE; //if set, print more
stuff

static int antenna_tcp_port=5005; //tcp port for the
antenna

static char *antenna_ip="127.0.0.1"; //antenna's IP address

static int antenna_alive_interval = 30; //keepalive timer

static int loc_interval=600;

static double lat,lon;

//Handle a message received from the antenna.

static void process_message(char *buff,int now)

{

 // define the message keywords. The current keywords are all
single character, but

 // the syntax permits a variable-length word, so use an
enumerated word list to

 // simplify any later expansion of the protocol.

 enum {STAT,LOC,LOCK_TIME,MAX};

 static char *keywords[]={"s" ,"w","a" ,0};

 int len;

 int i,np;

 len=strcspn(buff," \n#\r\t"); // get the length of the
message keyword.

 if(len==0)

 return; // no keyword--ignore
the message: it's a comment

 for(i=0;keywords[i]!=0;i++)

 if((len==strlen(keywords[i]))

 &&(0==strncmp(keywords[i],buff,len))

)

 break;

 switch (i)

 {case STAT:

 timers[STAT]=now+intervals[STAT]; //reset the timeout for
"alive"

 break;
OpenAMIP™ Standard Version 1.16 33
T0000682 | Rev D

OpenAMIP_modem.c
 case LOC:

 timers[GPS]=now+intervals[GPS]; //reset the timeout for
"expected GPS"

 break;

 case LOCK_TIME:

 np=sscanf(buff+len,"%d",&intervals[LOCK]);

 timers[LOCK]=now;

 break;

 case MAX: //ignore unknown
messages

 break;

 }

}

static void send_msg(char *buff,int sock)

{ int len=strlen(buff);

 if(len!=write(sock, buff, len)) // send message

 perror("Write to socket failed");

 if(verbose)

 printf("--> %s",buff);

}

/* We are about to go back to sleep. See if we need to do anything
first,

 and then decide when we should wake back up.

 We get the current time and check against each timer. If any
timer has

 expired, we process that timer, which may set another timer.
After expired

 timers are processed, we find the next timer that will expire
and compute

 and return the interval from now until then.

*/

static time_t process_timers(int sock,time_t now)

{

 int i;

 time_t next=FAR_FUTURE; //preload a long sleep interval.
34 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_modem.c
 char buff[100];

 if(timers[GPS]<now)

 { printf("Location timeout!\n");

 timers[GPS]=now+intervals[GPS];

 }

 if(timers[STAT]<now)

 { printf("Keepalive timeout!\n");

 timers[STAT]=now+intervals[STAT];

 }

 if(timers[LOCK]<now)

 { sprintf(buff,"L %d\n",modem_state);

 timers[LOCK]=now+intervals[LOCK];

 }

 for (i=0;i<MAXTIMER;i++)

 if(timers[i]<next)

 next=timers[i];

 return (next-now);

}

/* processing for connected state. Entered when a TCP connection
is established, exits

 when the connection dies.

 Start by initializing the timers, then send the satellite find
sequence, then enter

 the event loop.

 Event loop:sleep until data arrives or a timer expires. If data
arrives, the routine accumulates it

 and delivers it one line at a time to the message processor.
Timer expiries go to the

 timer processor, which computes the next sleep interval.

 */

static void handle_events(int sock)

{

 static char buff[1000];

 static char *scan_pt=buff;

 static char *read_pt=buff;

 char *eol;

 fd_set read_fds;
OpenAMIP™ Standard Version 1.16 35
T0000682 | Rev D

OpenAMIP_modem.c
 struct timeval now_st;

 struct timeval tv;

 int retval;

 int i;

 int len;

 time_t now;

 gettimeofday(&now_st,0);

 now=now_st.tv_sec;

 for(i=0;i<MAXTIMER;i++)

 { intervals[i]=3600;

 timers[i]=FAR_FUTURE;

 }

 sprintf(buff,"S %3.2f %1.2f %1.2f\n"

 "H %5.3f %5.3f\n"

 "P %c %c\n"

 "B %5.3f %2.3f\n"

 "F\n"

 "A 10\n"

 "W 300\n",

 sat_lon, sat_io_lat,sat_pol_skew,

 freq_center,freq_bandwidth,

 pol_rx,pol_tx,

 rx_lo,tx_lo

);

 send_msg(buff,sock);

 timers[GPS]=now+600+1;

 intervals[GPS]=601;

 timers[STAT]=now+21;

 intervals[STAT]=20;

 while(TRUE)

 { FD_ZERO(&read_fds);

 FD_SET(sock,&read_fds);

 tv.tv_sec=process_timers(sock,now);

 tv.tv_usec=0;

 retval=select(sock+1,&read_fds,NULL,NULL,&tv); //sleep here

 if(retval==-1)

 { perror("select()");
36 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_modem.c
 exit (1);

 }

 gettimeofday(&now_st,0);

 now=now_st.tv_sec;

 if(retval==1)

 { if(0>=(len = read(sock,read_pt, buff+999-read_pt)))

 return; //connection is closed

 read_pt+=len;

 *read_pt=0;

 while(0!=(eol=index(scan_pt,'\n'))) //is there a line in
the buffer?

 { *eol=0;

 if(verbose)

 printf("<-- %s\n",scan_pt);

 *eol='\n';

 process_message(scan_pt,now);

 scan_pt=eol+1;

 if(scan_pt>=read_pt)

 { read_pt=scan_pt=buff;

 *buff=0;

 }

 }

 }

 }

}

#define err(s) printf("error: %s\n",s)

static int process_args(int argc, char **argv)

{

 char *parm;

 char c;

 *(argv++);

 while (--argc)

 {

 parm= *(argv++);

 if (parm[0]=='-')

 { while((c=*++parm))
OpenAMIP™ Standard Version 1.16 37
T0000682 | Rev D

OpenAMIP_modem.c
 switch(c)

 {

 case 'p':

 antenna_tcp_port=atoi(*(argv++));

 if(parm[1]!='\0')

 { err("\'p\' must be last");

 return(FALSE);

 }

 if(!argc--)

 { err("missing port number after \'p\'");

 return(FALSE);

 }

 break;

 case 'i':

 if(!argc--)

 { err("missing ip address after \'i\'");

 return(FALSE);

 }

 antenna_ip= *argv++;

 break;

 case 'v':

 verbose=TRUE;

 break;

 default:

 err("unknown flag");

 //fall through

 case 'h':

 printf("OpenAMIP(TM) modem simulator version %s\n"

 "Usage: OpenAMIP_modem [options...] \n"

 " [options...] are any combination of:\n"

 " -i <antenns_ip> --ip address of antenna
controller.\n"

 " -p <port> --tcp port nbr of antenna
controller\n"

 " -v --verbose\n"

 " -h --print this message\n",

 version

);
38 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

OpenAMIP_modem.c
 return(FALSE);

 }

 }

 }

 return(TRUE);

}

/*

Main loop. get commandline params, open a TCP connection to the
antenna controller,

issue a satellite location sequence, ask for periodic status and
locations, and wait.

If the controller asks for periodic keepalive, then issue them.
After one minute,

shift to the next satellite and continue.

*/

int main(int argc, char **argv)

{

 int s=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP); //get a TCP
socket structure

 struct hostent *hp;

 struct sockaddr_in hostaddr_in;

 process_args(argc,argv);

 memset(&hostaddr_in,0,sizeof(struct sockaddr_in));

 hp = gethostbyname (antenna_ip);

 hostaddr_in.sin_family=AF_INET;

 hostaddr_in.sin_addr.s_addr=((struct in_addr *)(hp->h_addr))-
>s_addr;

 hostaddr_in.sin_port= htons(antenna_tcp_port);

 while(TRUE)

 { if(connect(s,(struct sockaddr *) &hostaddr_in,
sizeof(hostaddr_in)))

 { perror("TCP connect failed");

 exit(1);

 }
OpenAMIP™ Standard Version 1.16 39
T0000682 | Rev D

OpenAMIP_modem.c
 handle_events(s);

 // close socket

 if(verbose)

 printf("==== Closing Socket\n");

 if(0!=close(s))

 { perror("Could not close socket\n");

 return 1;

 }

 }

 return(0);

}

40 OpenAMIP™ Standard Version 1.16
 T0000682 | Rev D

iDirect
13861 Sunrise Valley Drive, Suite 300
Herndon, VA 20171-6126
+1 703.648.8000
+1 866.345.0983

www.idirect.net

Advancing a Connected World

	OpenAMIP™ Standard
	Revision History
	Contents
	About
	Purpose
	Disclaimer
	Certification
	Audience
	Contents
	Document Conventions
	Getting Help

	1 Introduction
	2 Protocol Specification
	2.1 Introduction
	2.2 Syntax
	2.3 Message Types
	Antenna Status Codes

	2.4 Physical Layer
	2.4.1 TCP Interface
	2.4.2 UDP Interface
	2.4.3 Asynchronous Serial Interface

	2.5 Semantics
	2.6 Examples
	2.6.1 Messages from Modem to Antenna Controller
	2.6.2 Messages from Antenna Controller to Modem

	3 Compatibility
	3.1 Version Compatibility
	3.2 Modified OpenAMIP
	3.3 Hardware Compatibility

	4 Test Suite
	4.1 Modem Module Reference Design
	4.2 OpenAMIP_sim.c
	4.3 OpenAMIP_modem.c

