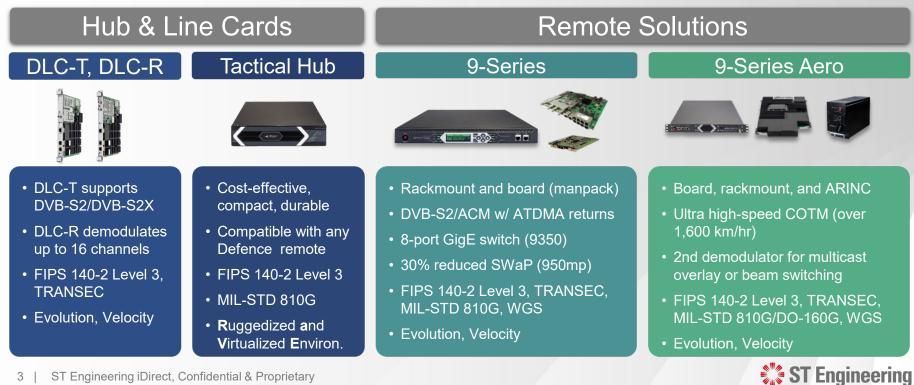


# How to Secure Your Network

Hendrik Beukes,

Senior Professional Services Engineer


© 2019 ST Engineering iDirect Confidential & Proprietary

## What is **TRANSEC**

- Transmission Security (TRANSEC) prevents an adversary from exploiting information available in a TDMA satellite network even without defeating encryption.
- With only link encryption, an adversary can still answer questions like:
  - What types of applications are active on the network?
  - Who is talking to whom?
  - Is the network or a particular remote site active now?
  - Based on traffic analysis, what is the correlation between network activity and real world activity?
  - Is a particular remote site moving?
  - Is there significant acquisition activity?



#### All Defense-Grade Products Support TRANSEC



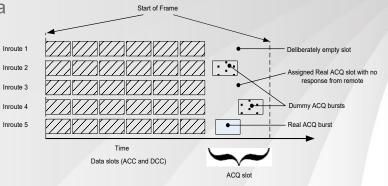
ST Engineering iDirect, Confidential & Proprietary 3

## **TRANSEC Goals**

|   | TRANSEC Requirement                          | Benefits                                                                    |
|---|----------------------------------------------|-----------------------------------------------------------------------------|
| 1 | Mask Channel Activity                        | Prevents transmission activity from being used as an intelligence gathering |
| 2 | Control Channel Information                  | Detection of repetitive data streams unsuccessful                           |
| 3 | Hub and Remote Authentication and Validation | Ensures only authorized use of network resources                            |



## **TRANSEC Goal #1 – Mask Channel Activity**


- Transmission activity can be used as an intelligence gathering mechanism
  - TDMA carriers are based on dynamic traffic bursts so changing traffic volumes and number of active senders can be detected.
  - DVB-S2 carriers send easily identifiable "fill frames" when there's no user data to send.
- These vulnerabilities allow adversaries to extrapolate information on timing, location or scale of strategic activities.



#### **TRANSEC Goal #1 – Mask Channel Activity**

#### • TRANSEC negate these risks by:

- Using Free Slot Allocation for TDMA bandwidth distribution
  - Creates a constant "wall of data" regardless of traffic profiles
  - Empty bursts are indistinguishable from user data
- Creating fill-frames with random data for underutilized DVB-S2 carriers
  - Empty frames are indistinguishable from user data
- Obfuscating acquisition activity
  - Creates traffic in the acquisition slot when no remotes are actually joining the network
  - Suppresses acquisition slot bursts even when remotes are acquiring

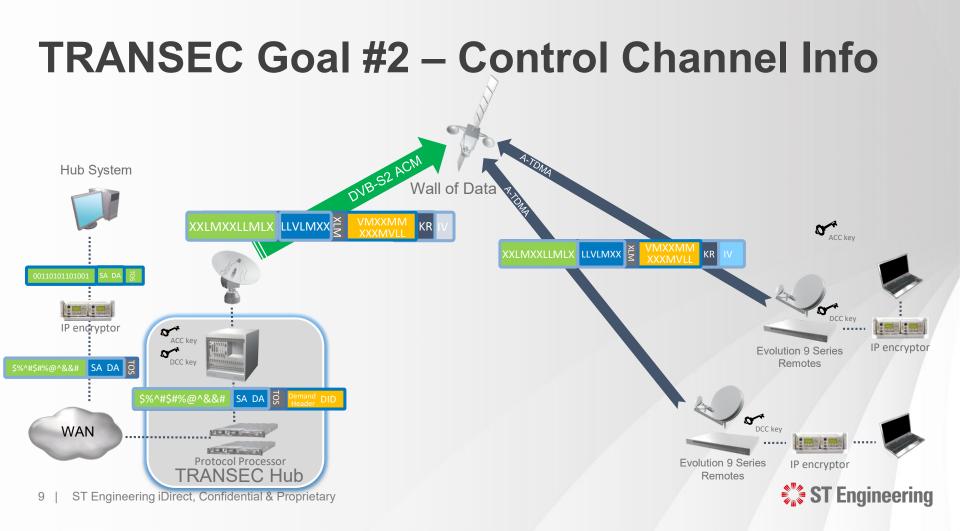




- When only user data payloads are encrypted, a great deal of data is still available
  - Both Layer 2 and Layer 3 packets have traffic engineering information (source, destination, priority, size) embedded in their headers
    - Size and priority information can betray the type of application in use.
    - Source and destination tell an adversary who is talking and when.
  - Layer 2 Control & Signaling information sent in the clear can reveal network activity levels.



#### • TRANSEC solves this by:


- Encrypting both Layer 3 payload, header, as well as Layer 2 traffic and signaling.
- Changing encryption keys frequently.

#### Acquisition Ciphertext Channel (ACC)

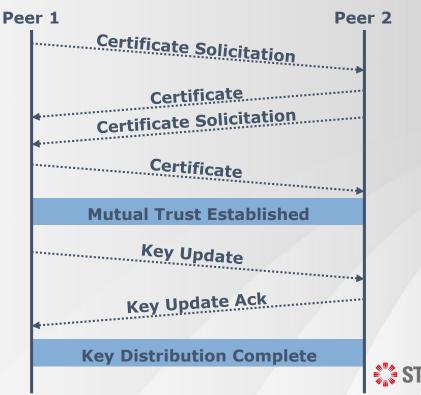
- Only used during Acquisition and Authentication.
- AES 256-bit CBC symmetric encryption.
- Key is initially injected into the remote manually (RSP) then updated over the air in operation.
- Key is rolled every 28 days by default. Key is stored if the power is turned off. Remote must manually rekey if it is out of network for two keyrolls.
- Data Ciphertext Channel (DCC)
  - Encrypts all user data traffic with the DCC key using AES 256-bit CBC symmetric encryption.
  - Masks activity with random blocks of data when remotes have no data to send ("Wall of Data").
  - Key is updated over the air every 8 hours by default. Not stored if power is cycled.







**ST** Engineering


#### Global Key Distributor (GKD)

- GKD distributes ACC key among one or more networks
  - Allows roaming remotes to acquire into all networks
- Multiple GKDs can be configured for redundancy
  - Within an individual hub
  - Between multiple hubs

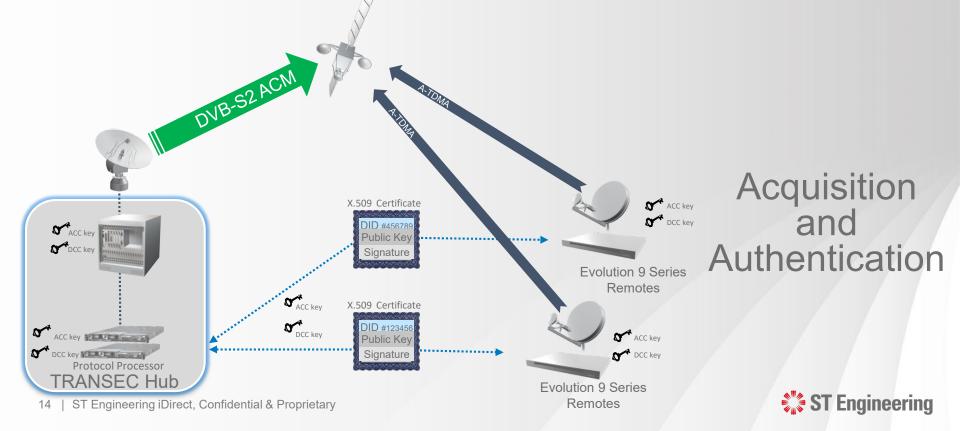
#### **Key Distribution Protocol**

#### Key Rolls

- Changing encryption keys periodically helps prevent attackers from deriving keys from captured data (cryptanalysis).
- iDirect TRANSEC makes rolling period configurable.



- Unauthorized use of network resources can lead to a "man-in-themiddle" attack
  - A remote might be "spoofed" and inserted into a secure network.
  - A secure remote might be coerced into joining an insecure network.


 While these kinds of attacks are extremely difficult even in non-TRANSEC environments, the risk of eavesdropping cannot be ignored.



#### TRANSEC eliminates these threats by:

- Using Public Key Infrastructure (PKI)
  - Key distribution
  - Message authentication
- Employing X.509 standards for:
  - Verifying identities
  - Establishing trust between network elements
  - Providing methods for dealing with security compromises
- Each network element (PP, HLC, remote) has a X.509 certificate
  - A certificate is a document that connects a public key to an identity.
  - Used to authenticate remotes, PPs, HLCs, and build a chain of trust.
  - Certificates are issued by iDirect CA (embedded in iVantage NMS).





- Handling Security Compromises
  - "Zeroize" is a process for removing all Critical Security Parameters (CSPs) from a network element (ACC and DCC keys, Public/Private keys, options file).
  - Certificate revocation adds a certificate to the CRL, breaking trust between an entity and the rest of the network.
    - Network acquisition fails
    - Key distribution ceases to work
  - Operator-triggered key rolls, in combination with certificate revocation prevents network elements from decoding data.



## **FIPS 140-2 Compliance**

#### • FIPS 140-2 Background

- Federal Information Processing Standard (FIPS) Publication 140-2
- Published by the National Institute of Standards and Technology (NIST).
- Documents US Standard for Security Requirements for Cryptographic Modules
- Four Increasing Levels of Security for Crypto Modules
- Lab Testing and Agency Submittal to achieve Certification
- We have expanded our existing FIPS 140-2 certification from Level 2 to Level 3
  - Cloak module 1.0.2.0
  - Embedded in the 9 series remotes and DLC line cards
  - Features a strong physical measure for tamper prevention



#### **A Best in Class Cybersecurity Solution**



At Satellite 2019, iDirect Government was recognized as having the Top Cybersecurity Solution in 2019 by the Mobile Satellite Users Association (MSUA) for TRANSEC solution.





# **Thank You**

ST Engineering iDirect, Confidential & Proprietary